Microbiological Hydroxylation. Part XII. ${ }^{1}$ Comparative Behaviour of d-Homogonane (Perhydrochrysene) Ketones and Steroids

By Michael J. Ashton, A. Sydney Bailey, and Sir Ewart R. H. Jones,* The Dyson Perrins Laboratory, Oxford University, Oxford OX1 3QY

Abstract

rac-D-Homogonanes, with one and two oxygen substituents in positions comparable to those of certain C_{19} steroids. have been synthesised. When these C_{18} compounds. lacking the steroid angular methyl groups. are incubated with cultures of Calonectria decora and Rhizopus nigricans. the patterns of hydroxylation observed are closely analogous to those with the structurally related steroids.

Microbiological hydroxylation of a large range of mono- and di-oxygenated C_{19} (and some C_{18}) steroids has been investigated ${ }^{2-5}$ in order to ascertain the effect of varying the positions of the oxygen functions around the nucleus on the hydroxylation pattern. It is also of interest to study the extent to which the pattern depends upon the fairly precise shape and contours of the steroid nucleus. As a first step in this direction some $r a c$-dhomogonanes (perhydrochrysenes, e.g. see the Figure), in which ring D is six-rather than five-membered and the angular methyl groups characteristic of the steroids are omitted, were synthesised and used as substrates.

When 5α-androstan-3-one is introduced into cultures of Calonectria decora ${ }^{5}$ the steroid is dihydroxylated (52% yield) as indicated in the Figure; the corresponding $\alpha \beta$-unsaturated ketone (androst-4-en-3-one) is hydroxylated similarly but more rapidly. With the same organism the 3,12 -dioxo-compound is mono-hydroxylated in the 15α-position in 37% yield. ${ }^{4}$ With Rhizopus nigricans, $11 \alpha, 16 \beta$-dihydroxylation (33%) is observed
${ }^{1}$ Formerly entitled Microbiological Hydroxylation of Steroids. Part XI, A. M. Bell, V. E. M. Chambers. Sir Ewart R. H. Jones, G. D. Meakins, W. E. Müller, and J. Pragnell, J.C.S. Perkin I, 1974, 312; for further details of the work described in this paper see M. J. Ashton, D.Phil. Thesis, Oxford, 1972.
${ }_{2}$ Sir Ewart R. H. Jones. Pure Appl. Chem., 1973, 33, 39.
with the 3 -ketone and the dioxygenated 11α-hydroxy5α-androstan- 3 -one (Figure) undergoes smooth 16β hydroxylation (53%). In all these instances the substituent is equatorial.
The results obtained under comparable conditions with the synthetic substrates are set out in Table 1; the most significant examples are illustrated in the Figure. (The syntheses of the substrates and the determination of the structures of the transformation products are described below.) With C. decora the positions, stereochemistry, and facility of the di- and monosubstitution with the first two substrates (8) and (10), which have considerable structural similarities to the normal steroid substrates (Figure), are exactly as might be expected. The dominant directing influence of the terminal ring carbonyl group is clearly seen and the distance between the two carbon atoms which are substituted (12-15) is $4.1 \AA$ compared with $3.8 \AA$ in the steroids. The $\Delta^{5(10)}$-ketone (5) and the enol ether are
${ }^{3}$ A. M. Bell, J. W. Browne, W. A. Denny, Sir Ewart R. H. Jones. A. Kasal. and G. D. Meakins, J.C.S. Perkin I, 1972, 2930.
${ }^{4}$ A. M. Bell, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins, and W. E. Müller, J.C.S. Perkin I, 1972, 2579.
${ }_{5}$ A. M. Bell, P. C. Cherry, I. M. Clark, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins, and P. D. Woodgate. J.C.S. Perkin I, 1972, 2081.
probably hydroxylated after conversion into the $\alpha \beta$ unsaturated ketone (10) in the medium of $\mathrm{pH} 5 \cdot 5$. The 15α-substitution of the 4,12 -diketone (15) is precisely in

Calonectria decora

Rhizopus nigricans
 D-homogonane derivatives
line with our experience with the similarly substituted androstan- 4 -one. The further substitution (7α) in ring B is akin to that observed (6α) with androstan-3-one in the presence of dimethyl sulphoxide; ${ }^{5}$ its axial orientation may be the result of inhibition of any equatorial approach to the 7 -position by the 15α-hydroxy-group. Only a

Table 1
Microbiological hydroxylation of synthetic substrates

Substrate	Conditions	Substrate recovered (\%)	Main product(s) (\%)*	
Calonectria decora				
(8)	E4	30	(18)	27
(10)	E5	6	(18)	78
			(23)	17
(5)	E3	20	(18)	9
(12)	E5	29	$\begin{aligned} & 3 \alpha-\mathrm{OH} \\ & 12-\mathrm{CO} \end{aligned}$	30
(15)	E4	30	(21)	19
(4)	E3	$11 \div$	(18)	5
Rhizopus nigricans				
(10)	E4	54	(25)	50
			(27)	4

[^0]single substrate was used with R. nigricans, the $17 \alpha-$ substitution (equatorial-cf. 16β in steroids-Figure) being entirely in accord with expectations, the $\mathrm{C}(12)-\mathrm{C}(17)$ distance $(4 \cdot 1 \AA)$ being similar to the $C(11)-C(16)$ distance ($5.0 \AA$) in the steroids. The close agreement observed in the results described indicated that the changes in shape arising from ring D enlargement and the absence
${ }^{6}$ E. Vischer, J. Schmidlin, and A. Wellstein, Experientia, 1956, 12, 50; W. S. Johnson, W. A. Vredenburgh, and J. E. Pike, J. Amer. Chem. Soc., 1960, 82, 3409.
${ }_{7}$ Y. Y. Lin and L. L. Smith, Biochim. Biophys. Acta, 1970, 515, 526; Y. Y. Lin. M. Shibahara, and L. L. Smith, J. Org. Chem., 1969, 34, 3530.
${ }^{8}$ W. S. Rapson and R. Robinson, J. Chem. Soc., 1935, 1285.

- J. A. Marshall, H. Fanbl, and T. M. Warne, Chem. Comm., 1967, 753; H. C. Odom and A. R. Pinder, ibid., 1969, 26: R. E. Ireland, 'Organic Synthesis,' Prentice-Hall, Englewood Cliffs, N.J., 1969, pp. 101-103.
of the two angular methyl groups had little effect on the course of the hydroxylation process and so no more detailed exploration with closely related substrates seemed justifiable. More substantial skeletal variations in substrates have been investigated and a report of one of these is in the following paper.

In all these hydroxylation experiments with racemic substrates no formation of optically active products has been observed and in no case was the recovered starting material optically active. Resolution of racsteroids by certain micro-organisms can be effected ${ }^{6}$ and resolution of rac-19-norsteroids and 13β-alkylgonanes has been reported ${ }^{7}$ but in general hydroxylating micro-organisms seem not to be highly substrate specific. As minor structural variations, of the kind examined in this paper, seem to be readily tolerated then differentiation between enantiomers whose general shapes would be similar apart from the angular methyl groups on one face would seem to be unlikely.

The ketone (1), ${ }^{8}$ stable to sodium methoxide in boiling methanol, was obtained in good yield by the condensation of 6 -methoxytetralone with 1 -acetylcyclohexene under carefully controlled conditions; its trans-transoid-stereochemistry follows from the most favoured conformation of the transition state. ${ }^{9}$ Palla-dium-catalysed hydrogenation of (l) yielded a mixture of hydrogenation and hydrogenolysis products (cf. the hydrogenation ${ }^{10}$ of $\Delta^{1,9}$-octalin-2-one). The crude material was oxidised and poor yields of (3) and (6) were obtained. However, the required trans-dihydro-compound (3) was obtained in excellent yield by lithiumammonia reduction. ${ }^{11}$ Use of ethanol as a proton source yielded the alcohol (2) which was oxidised to the ketone (3); with ammonium chloride as proton source the ketone (3) was obtained directly. The cis-dihydroketone (6) results from selective ${ }^{12}$ hydrogenation of the acetal (7) followed by hydrolysis.

Birch reduction of (3) using lithium and t-butyl alcohol-ether ${ }^{13}$ yielded the enol ether (4) which was obtained directly from (l) using a lithium : substrate ratio of $40: 1$. The n.m.r. spectrum of the ether was consistent with this structure $\left\{\tau=5 \cdot 3\left[\mathrm{t}, \mathrm{C}(2) \mathrm{H}^{14}\right]\right.$ and $\left.6.3\left[\mathrm{~m}, W_{\frac{1}{z}} 18 \mathrm{~Hz}, \mathrm{C}(12) \mathrm{H}\right]\right\}$; the band-width shows $\mathrm{C}(12) \mathrm{H}$ is axial ${ }^{15}$ and hence the hydroxy-group is equatorial. The hydrolysis of the enol ether was examined under various conditions (see Experimental section). Perchloric acid-methanol gave the largest proportion of $\alpha \beta$-unsaturated material, but the most satisfactory method of obtaining (10) was by hydrolysing

[^1](4) to (5) and then isomerising (5) to (10) using sodium ethoxide, this route avoiding a chromatographic separation of (10). The stereochemistry of (10) follows from its method of formation via (5). ${ }^{16}$ Reduction of (10) yielded the diol (11) which, on oxidation, gave the dione (12).

Huang-Minlon reduction of (3) afforded a mixture ${ }^{12,17}$ of the corresponding deoxy derivative and the derived phenol; re-methylation gave the pure ether which was converted by the usual route into the unsaturated ketone (8).

Following the same route, but using 5-methoxytetralone, compound [(2), with OMe at 4 -position] was prepared.
absence of the isomeric ketone (13). Reduction of (9) yielded the diol (14) which was oxidised to the diketone (15).

From the reaction between ethylene glycol and (1) to give the acetal (7) a minor product was isolated to which we assign structure (16). The compound did not contain OH or CO groups (i.r.) and in the mass spectrum the molecular ion ($m / e 322$) was the base peak. Treatment of (16) with formic acid did not hydrolyse the acetal group to form the phenol but gave the formyl ester ($\mathbf{1 7} ; \mathrm{R}=\mathrm{CHO}$) which was hydrolysed to the corresponding alcohol ($\mathbf{1 7}$; $\mathrm{R}=\mathrm{H}$).

Incubation experiments were carried out using two micro-organisms, Calonectria decora and Rhizopus

Reagents: (i) $\mathrm{H}_{2}-\mathrm{Pd} / \mathrm{C}$; (ii) $\mathrm{H}_{2} \mathrm{CrO}_{4}-\mathrm{Me}_{2} \mathrm{CO}$; (iii) $\mathrm{Li}-\mathrm{NH}_{3}-\mathrm{EtOH}$; (iv) $\mathrm{Li}-\mathrm{NH}_{3}-\mathrm{NH}_{4} \mathrm{Cl}$; (v) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}-\mathrm{TsOH}$; (vi) $\mathrm{HCl}-$ MeOH ; (vii) $\mathrm{Li}-\mathrm{NH}_{3}-\mathrm{Bu}^{t} \mathrm{OH}$; (viii) $\mathrm{HClO}_{4}-\mathrm{MeOH}$; (ix) NaOEt ; (x) oxalic acid; (xi) NaOH aq; (xii) DDQ .
The compounds described in this paper are all racemates; an arbitrary choice has been made of one enantiomer for illustration.

5-Methoxytetralins are unaffected ${ }^{16 a, 18}$ by metalammonia reduction under conditions which reduce 6 -methoxytetralins. However, by using a large excess of lithium and maintaining a bronze-coloured phase ${ }^{19}$ in the liquid ammonia we succeeded in reducing the aromatic ring of this ether. The crude material was treated with hydrochloric acid and the unsaturated ketone (9) isolated by chromatography (yield 26%). The n.m.r. spectrum of the compound contained a signal at $\tau 6.65\left(W_{\frac{1}{2}} 22 \mathrm{~Hz}\right)$ indicating that $\mathrm{C}(12) \mathrm{H}$ is axial and there were no signals in the vinyl-proton region showing
${ }^{16}$ (a) A. L. Wilds and N. A. Nelson, J. Amer. Chem. Soc., 1953, 75, 5730; (b) S. Anachenko, V. M. Rzhenznikov, N. N. Leonov, and I. V. Torgov, Bull. Acad. Sci. U.S.S.R., Div. Chem. Soc., 1961, 10, 1789; (c) A. J. Birch and H. Smith, J. Chem. Soc., 1956, 4909.
nigricans; the results are summarised in the Table and the evidence for the structures follows.

Compound (18) was shown to be a dihydroxy- $\alpha \beta$-unsaturated ketone. The u.v. spectrum of the compound was unaffected by alkali, indicating the new hydroxygroup was not at positions 1, 2, 6, or 7; the n.m.r. signal at $\tau 6.48\left(W_{\frac{1}{2}} 25 \mathrm{~Hz}\right)$ indicated two equatorial hydroxy-groups. Reduction of (18) followed by oxidation afforded the trione (19). The mass spectrum of this compound indicated clearly that the new CO group was at $\mathrm{C}(\mathbf{1 5})$. The molecular ion was of moderate
${ }^{17}$ M. Gates and W. G. Webb, J. Amer. Chem. Soc., 1958, 80, 1186.

18 A. J. Birch, J. Chem. Soc., 1944, 430.
${ }^{19}$ W. S. Johnson, B. Bannister, and R. Pappo, J. Amer. Chem. Soc., 1956, 78, 6331 .
intensity, $m / e 288(37 \%)$, 260 (17) ($M-\mathrm{CO}$). Three peaks arise by McLafferty rearrangement involving $\mathrm{C}(7) \mathrm{H}$ and cleaving $8-14$ to give an ion (20); fragmentation of this yields $m / e 97\left(100 \%, \mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}\right), 124$ (9 , $\left.\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{O}_{2}\right), 149\left(6, \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}\right)$, and $164\left(11, \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}\right)$. There was also a significant peak m/e $205(20 \%$, $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{O}_{2}$) characteristic of the cleavage of a 1,6 -dioxosteroid. ${ }^{20}$ By contrast, in the mass spectrum of the dione (12) the molecular ion was the base peak and only one peak stronger than 10% [$m / e 109(15 \%)]$ was observed.

The n.m.r. spectrum of (23) indicated 12β - and $15 \alpha-$ hydroxy-groups [$\tau 6.45\left(2 \mathrm{H}, W_{\frac{1}{2}} 24 \mathrm{~Hz}\right)$] and a signal $\tau 5.65\left(W_{ \pm} 9 \mathrm{~Hz}\right)$ suggested an axial hydroxy-group close to the $\alpha \beta$-unsaturated ketonic group. On treatment with base at room temperature the u.v. spectrum of the compound changed significantly, $\lambda_{\text {max }} 241(\varepsilon 11,500) \longrightarrow$ $282 \mathrm{~nm}(\varepsilon 29,500)$, the O.D. vs. time plots showing an isosbestic point. The dehydration product (24) was
oxidation with selenium dioxide yielded a product (26) which contained a typical ene-dione chromophore [$\lambda_{\text {max }}$ $254(\varepsilon 10,500)]$. The tentative structure (27) is assigned to the minor product obtained from R. nigricans. Only 9 mg of material were obtained and we assume that the compound is obtained by further hydroxylation of (25). R. nigricans is known ${ }^{21}$ to hydroxylate $\mathrm{C}(6)$ and $\mathrm{C}(7)$. In the n.m.r. spectrum of the material the two CHOH signals we assign to $\mathrm{C}(12)$ and $\mathrm{C}(13)$ appear at $\tau 6.44$ ($\mathrm{m}, W_{1} 24 \mathrm{~Hz}$) and the new CHOH signal appears at much lower field [$\left.\tau 5.65\left(W_{\frac{1}{2}} 9 \mathrm{~Hz}\right)\right]$.

EXPERIMENTAL

Instruments used and general experimental conditions have been reported. ${ }^{3}$ Standard isolation of neutral products involved treating the reaction mixture with water, extracting with a suitable solvent, and washing the extract with dilute acid and with alkali. After drying with magnesium sulphate the solvent was removed in vacuo. ' Oxidation ' implies chromic acid-acetone unless otherwise

isolated, characterised, and prepared by the oxidation [dichlorodicyanobenzoquinone (DDQ)] of (18). Incubation of the dione (12) yielded only the mono-reduction product ($3 \alpha-\mathrm{OH}, 12-\mathrm{CO}$). The n.m.r. spectrum showed the presence of a 3α-hydroxy-group, oxidation yielded (12), and Huang-Minlon reduction followed by oxidation gave the 3 -one [obtained by the reduction of (8)]. The n.m.r. spectrum of compound (21) [$\left.\tau 6 \cdot 40\left(W_{z} 22 \mathrm{~Hz}\right)\right]$ indicated that the new hydroxy-group was equatorial and the triketone (22) obtained by oxidation was not a 1,3 -diketone; dehydrogenation of this ketone by either selenium dioxide or DDQ failed [compound (19) was also stable to these reagents]. These observations eliminated positions other than $\mathrm{C}(15)$ and $\mathrm{C}(16)$ for the new OH group. The mass spectrum of (22) was very similar to that of compound (19); m/e 288 ($M^{+}, 40 \%$), 205 (20), 164 (21), 149 (19), 124 (8), and 97 (100). The n.m.r. spectrum of $(25)\left[\tau 6 \cdot 45\left(2 \mathrm{H}, W_{\frac{1}{2}} 23 \mathrm{~Hz}\right)\right]$ indicated two equatorial hydroxy-groups; the u.v. spectrum of the compound was unaffected by alkali, eliminating positions $1,2,6$, and 7 for the new hydroxy-group. The triketone obtained by reduction of (25) followed by oxidation was obviously not a 1,3 -diketone; and on
stated and acetylations were carried out using pyridineacetic anhydride at 0° for 15 h . T.l.c. and p.l.c. were carried out using unbaked kieselgel $\mathrm{PF}_{254 / 366}$ plates; petrol refers to fraction b.p. $60-80^{\circ}$. All compounds described are racemic.

3-Methoxy-D-homogona-1,3,5(10),9(11)-tetraen-12-one (1). -The experimental conditions are critical. $\mathrm{Na}(2 \cdot 3 \mathrm{~g})$ was dissolved in anhydrous $\mathrm{NH}_{3}(500 \mathrm{ml})$, distilled from Na and containing a trace of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$. After lh the NH_{3} was evaporated in N_{2}, dry $\mathrm{Et}_{2} \mathrm{O}(500 \mathrm{ml})$ being added simultaneously. The NaNH_{2} suspension was boiled and stirred for 0.5 h to remove traces of NH_{3}. 6-Methoxytetralone $(17.6 \mathrm{~g})$ in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ was added, the mixture was stirred under reflux for $12 \mathrm{~h}\left(\mathrm{~N}_{2}\right)$ and then at 0°, 1-acetylcyclohexene ${ }^{22}(13.2 \mathrm{~g})$ was slowly added. Next day the solid $(19.7 \mathrm{~g})$ was collected, washed with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}$, and with $\mathrm{EtOH}(20 \mathrm{ml})$. Crystallisation from 1,3-dimethoxypropane gave the ketone (I) ($19 \cdot 1 \mathrm{~g}$), needles, m.p. 229 230° (lit., ${ }^{8} 230^{\circ}$) (Found: C, $80.5 ; \mathrm{H}, \mathbf{7 . 9}$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2}: \mathrm{C}, 80 \cdot 8 ; \mathrm{H}, 7.9 \%$) ; $\nu_{\text {max. }}(\mathrm{N}) 1595 \mathrm{~s}, 1610 \mathrm{w}$, and $1645 \mathrm{~s} \mathrm{~cm}^{-1}$; $\lambda_{\text {max }} 242$ and 327 nm ($\varepsilon 7500$ and 17,000);
${ }^{20}$ R. T. Aplin and P. C. Cherry, Chem. Comm., 1966, 628.
${ }^{21}$ J. M. Evans, E. R. H. Jones, A. Kasal, V. Kumar, G. D. Meakins, and J. Wicha, Chem. Comm., 1969, 1491.
${ }_{22}$ J. Chanley, J. Amer. Chem. Soc., 1948, ry, 246.
$\tau\left(\mathrm{CDCl}_{3}\right) 2.27[1 \mathrm{H}, \mathrm{d}, J 8.7 \mathrm{~Hz}, \mathrm{C}(1) \mathrm{H}], 3.23[1 \mathrm{H}, \mathrm{q}, J 8.7$ and $3 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}], 3 \cdot 3[1 \mathrm{H}, \mathrm{d}, J 3 \mathrm{~Hz}, \mathrm{C}(4) \mathrm{H}], 3 \cdot 45[1 \mathrm{H}, \mathrm{s}$, $\mathrm{C}(11) \mathrm{H}], 6 \cdot 18(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $7 \cdot 0-9 \cdot 0(15 \mathrm{H}) ; m / e 282$ ($M^{+}, 100 \%$), 239 (17), 200 (89), and 185 (48), $m^{*} 142$ (282 \longrightarrow 239) .

When undried ammonia was used a brown solid (13.5 g) was obtained. Chromatography on silica gave 6 -methoxytetralone (8.95 g) and self-condensation products of 1-acetylcyclohexene. ${ }^{23}$ From the ethereal mother-liquors some of the dihydro-compound (3) $(2.7 \mathrm{~g})$ (see below) was isolated.

Hydrogenation of (1).-The compound (1) (1.0 g) in AcOEt (200 ml) was hydrogenated at $20^{\circ}(\mathrm{Pd}-\mathrm{C}, 10 \%$; $400 \mathrm{mg} ; 3 \mathrm{~atm}$). Oxidation gave product (0.75 g ; m.p. $135-151^{\circ}$) and then by fractional crystallisation afforded trans-transoid-trans-3-methoxy-D-homogona-1,3,5(10)-trien-
$12-$ ne (3) (100 mg), needles (from MeOH), m.p. $153-155^{\circ}$ (Found: C, $80.4 ; \mathrm{H}, 8.6 . \quad \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{2}$ requires $\mathrm{C}, 80 \cdot 2 ; \mathrm{H}$, $8.5 \%)$; $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1609 \mathrm{~s}$ and $1705 \mathrm{~s} \mathrm{~cm}^{-1}$; $\lambda_{\text {max }} 228,280$, and $287 \mathrm{~nm}\left(\varepsilon 5300,1400\right.$, and 1250); $\tau\left(\mathrm{CDCl}_{3}\right) 2.81[1 \mathrm{H}, \mathrm{d}$, $J 8.7 \mathrm{~Hz}, \mathrm{C}(1) \mathrm{H}], 3.28[1 \mathrm{H}, \mathrm{q}, J 8.7$ and $3.0 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}]$, $3.36[1 \mathrm{H}, \mathrm{d}, J 3 \mathrm{~Hz}, \mathrm{C}(4) \mathrm{H}], 6 \cdot 23(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $7 \cdot 1-9 \cdot 0$ (18 H); $m / e 284$ ($M^{+}, 100 \%$), 199 (24), 173 (38), 171 (19), and $160(20)$. The more soluble cis-transoid-trans-ketone (6) $(80 \mathrm{mg})$ formed needles (from MeOH), m.p. $146-147^{\circ}$ (Found: C, $80.3 ; \mathrm{H}, 8.7 . \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.2 ; \mathrm{H}$, $8.5 \%)$; $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1610$ and $1705 \mathrm{~cm}^{-1}$; $\lambda_{\text {max. }} 228,277$, and $286 \mathrm{~nm}(\varepsilon 5850,1800$, and 1650$)$; $\tau\left(\mathrm{CDCl}_{3}\right) 2.87[1 \mathrm{H}, \mathrm{d}$, $J 8.8 \mathrm{~Hz}, \mathrm{C}(1) \mathrm{H}], 3.31[1 \mathrm{H}, \mathrm{q}, J 8.8$ and $3 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}]$, $3.37[1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3 \mathrm{~Hz}, \mathrm{C}(4) \mathrm{H}], 6.23$ (3H, s, OMe), and $7.0-8.9$ (18H); $m / e 284$ ($M^{+}, 100 \%$), 240 (15), 199 (27), and 173 (39). The separation was followed by g.l.c., R_{t} (3) $17 \mathrm{~min}, R_{\mathrm{t}}$ (6) 20 min , gas flow $40 \mathrm{ml} \mathrm{min}^{-1}, T 215^{\circ}, 2 \%$ polyethylene glycol adipate column, Pye 104 instrument.

3-Methoxy-D-homogona-1,3,5(10)-trien-12 3 -ol (2).—A slurry of the ketone (1) $(4.5 \mathrm{~g})$ in $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{ml})$ was poured into NH_{3} (500 ml ; distilled from sodium) containing $\mathrm{Et}_{2} \mathrm{O}$ $(115 \mathrm{ml}) . \mathrm{Li}(360 \mathrm{mg})$, and 3 h later, EtOH (10 ml) was added slowly. This gave compound (2) (3.95 g) as needles (from MeOH), m.p. 132- 134° (Found: C, 79.9; $\mathrm{H}, 9 \cdot 3 . \quad \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2}$ requires C, 79.7 ; $\mathrm{H}, 9 \cdot 15 \%$); $v_{\text {max }}\left(\mathrm{CCl}_{4}\right)$ 1610 and $3625 \mathrm{~cm}^{-1}$; $\lambda_{\max } 222,279$, and $288 \mathrm{~nm}(\varepsilon 5250$, 1500 , and 1500$)$; $\tau\left(\mathrm{CDCl}_{3}\right) 2.29[1 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}, \mathrm{C}(1) \mathrm{H}]$, $3.20[1 \mathrm{H}, \mathrm{q}, J 9$ and $3 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}], 3.30[1 \mathrm{H}, \mathrm{d}, J 3 \mathrm{~Hz}$, $\mathrm{C}(4) \mathrm{H}], 6.20(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.85\left(1 \mathrm{H}, \mathrm{m}, W_{\frac{1}{2}} 21 \mathrm{~Hz}, \mathrm{CHOH}\right)$, $7 \cdot 3\left[\mathrm{~m}, \mathrm{C}(6) \mathrm{H}_{2}\right.$ and $\left.\mathrm{C}(9) \mathrm{H}\right]$, and $7 \cdot 8-9 \cdot 0(16 \mathrm{H}) ; m / e 286$ ($M^{+}, 30 \%$), $268(100)$, and $225(8) . \quad$ Oxidation of this alcohol $(4 \mathrm{~g})$ gave ketone (3) (3.8 g), needles (from MeOH), m.p. and mixed m.p. $153-154^{\circ}$. When the above Li reduction of (1) (6 g) was repeated replacing the EtOH by $\mathrm{NH}_{4} \mathrm{Cl}$ $(10 \mathrm{~g})$ the ketone (3) $(5.7 \mathrm{~g})$ was obtained directly.

Reaction of (1) with Ethylene Glycol.-A solution of the ketone (1 g) in benzene (180 ml) containing ethylene glycol $(1.5 \mathrm{ml})$ and $\mathrm{TsOH}, \mathrm{H}_{2} \mathrm{O}(100 \mathrm{mg})$ was boiled under reflux (Dean-Stark) for 14 h . Chromatography (silica; $\mathrm{Et}_{2} \mathrm{O}-$ light petroleum 1:9) yielded the acetal (7), small needles, m.p. $104-105^{\circ}(845 \mathrm{mg})$ (petrol) (Found: C, 77.3; H, 8.0 . $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 77 \cdot 3 ; \mathrm{H}, 8 \cdot 0 \%\right)$; $\nu_{\text {max }}\left(\mathrm{CCl}_{4}\right) 1462 \mathrm{~cm}^{-1}$; $\lambda_{\text {max }} 274 \mathrm{~nm}(\varepsilon 16,000) ; \tau\left(\mathrm{CDCl}_{3}\right) 2 \cdot 95[1 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}$, $\mathrm{C}(1) \mathrm{H}], 3.3[1 \mathrm{H}, \mathrm{q}, J 8.3$ and $2.8 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}], 3.35[1 \mathrm{H}, \mathrm{d}$, $J 2.8 \mathrm{~Hz}, \mathrm{C}(4) \mathrm{H}], 6.03\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 6.21(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 7.3\left[\mathrm{~m}, \mathrm{C}(6) \mathrm{H}_{2}\right.$ and $\left.\mathrm{C}(11) \mathrm{H}_{2}\right]$, and $7.6-8.8(12 \mathrm{H})$; $m / e 326\left(M^{+}, 100 \%\right), 265(75)$, and 254 (12). Elution with $\mathrm{Et}_{2} \mathrm{O}$-petrol ($1: 4$) gave starting material (30 mg) and $\mathrm{Et}_{2} \mathrm{O}$-petrol (1:1) gave 12,12-ethylenedioxy-3-methoxy-D-homogona-1,3,5(10),6,8(9),13(14)-hexaene (16) (89 mg),
needles (from MeOH), m.p. $170-171^{\circ}$ (Found: C, 78.3; $\mathrm{H}, 6.8 . \quad \mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{3}$ requires C, 78.2; $\mathrm{H}, 6.9 \%$) ; $\nu_{\text {max. }}$ (N) 1602 and $1625 \mathrm{~cm}^{-1}$; $\lambda_{\text {max }} 221,223,257,273,285,313,339$, and $353 \mathrm{~nm}(\varepsilon 30,000,28,000,43,000,31,500,22,500,9150$, 500 , and 550$)$; $\left(\mathrm{CDCl}_{3}\right) 1.5[1 \mathrm{H}, \mathrm{d}, J 9.9 \mathrm{~Hz}, \mathrm{C}(6) \mathrm{H}]$, $2.12[1 \mathrm{H}, \mathrm{d}, J 9.9 \mathrm{~Hz}, \mathrm{C}(1) \mathrm{H}], 2.24[1 \mathrm{H}, \mathrm{d}, J 3.0 \mathrm{~Hz}, \mathrm{C}(4) \mathrm{H}]$, $2.45[1 \mathrm{H}, \mathrm{d}, J 9.9 \mathrm{~Hz}, \mathrm{C}(7) \mathrm{H}], 2.78[1 \mathrm{H}, \mathrm{q}, J 9.9$ and 3.0 Hz , $\mathrm{C}(2) \mathrm{H}], 5.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 6.06(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.85$ $\left[2 \mathrm{H}, \mathrm{s}, \mathrm{C}(11) \mathrm{H}_{2}\right], 7 \cdot 18\left[4 \mathrm{H}, \mathrm{m}, \mathrm{C}(15) \mathrm{H}_{2}\right.$ and $\left.\mathrm{C}(17 \mathrm{a}) \mathrm{H}_{2}\right]$, and $8 \cdot 1\left[4 \mathrm{H}, \mathrm{m}, \mathrm{C}(16) \mathrm{H}_{2}\right.$ and $\left.\mathrm{C}(17) \mathrm{H}_{2}\right] ; m / e 322\left(M^{+}, 100 \%\right)$ and $278(47 \%), m^{*} 240(322 \longrightarrow 278)$.
The acetal (7) (660 mg) was hydrogenated ($\mathrm{Pd}-\mathrm{C}, 10 \%$; 1 atm , ethanol, room temp.). P.l.c. (EtOAc) gave an oil ($R_{\mathrm{F}} 0.6$) (560 mg .) This was dissolved in light petroleum and the solution cooled to -80° and the solvent removed from the solid by pipette. This was repeated three times giving 12,12-ethylenedioxy-3-methoxy-D-homogona-1,3,5(10)triene as an oil (539 mg) (Found: $\mathrm{C}, 77.5 ; \mathrm{H}, 7 \cdot 2 . \quad \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\mathrm{C}, 77 \cdot 8 ; \mathrm{H}, 7 \cdot 5 \%$); $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) 1450$ and $1460 \mathrm{~cm}^{-1}$; $\tau\left(\mathrm{CCl}_{4}\right) 2 \cdot 96[1 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}, \mathrm{C}(1) \mathrm{H}], 3.47[1 \mathrm{H}, \mathrm{q}, J 9 \cdot 0$ and $3.0 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}], 3.54[1 \mathrm{H}, \mathrm{d}, J 3 \mathrm{~Hz}, \mathrm{C}(4) \mathrm{H}], 6.12(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 6.29(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $7 \cdot 0-9.0(18 \mathrm{H})$; $m / e 328\left(M^{+}, 100 \%\right)$ and $267(50)$. This acetal (500 mg) was hydrolysed ($\mathrm{MeOH}-\mathrm{HCl}$) to yield the ketone (6) (479 mg), needles from MeOH , m.p. and mixed m.p. 146 147°, identical with material described earlier (i.r., g.l.c.).

Compound (16) (160 mg) was dissolved in $\mathrm{HCO}_{2} \mathrm{H}(20 \mathrm{ml}$; 90%). After 3 h the solution was poured into water. P.l.c. of the product $\left[\mathrm{Et}_{2} \mathrm{O}\right.$-hexane ($1: 1$), 2 elutions] gave 12-(2-formyloxyethoxy)-8-methoxy-1,2,3,4-tetrahydrochrysene ($17 ; \mathrm{R}=\mathrm{CHO}$) (130 mg), blades, m.p. $178-179^{\circ}$, from $\mathrm{Et}_{2} \mathrm{O}$-light petroleum (Found: C, 75.1; H, 6.5. $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{4}$ requires C, $75.4 ; \mathrm{H}, 6.3 \%$); $\nu_{\text {max }}\left(\mathrm{CCl}_{4}\right) 1665 \mathrm{w}$ and $1735 \mathrm{~cm}^{-1}$; $\lambda_{\text {max }} 257,273,285,313,339$, and 353 nm $(\varepsilon 31,400,12,200,10,200,4400,790$, and 550$) ;{ }^{24} \tau\left(\mathrm{CS}_{2}\right)$ $2.03(1 \mathrm{H}, \mathrm{s}, \mathrm{O} . \mathrm{CO} \cdot \mathrm{H}), 1.8-3.40(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 3.42[1 \mathrm{H}, \mathrm{s}$, $\mathrm{C}(11) \mathrm{H}], 5.65\left(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}\right.$, Ar $\left.\cdot \mathrm{O} \cdot \mathrm{CH}_{2}\right), 5.84(2 \mathrm{H}, \mathrm{t}$, $\left.J 6 \mathrm{~Hz}, \cdot \mathrm{CH}_{2} \cdot \mathrm{O} \cdot \mathrm{CH}\right), 6 \cdot 29(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7 \cdot 39\left[4 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) \mathrm{H}_{2}\right.$ and $\left.\mathrm{C}(4) \mathrm{H}_{2}\right]$, and $8.27\left[4 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{H}_{2}\right.$ and $\left.\mathrm{C}(3) \mathrm{H}_{2}\right] ; m / e$ $350\left(M^{+}, 100 \%\right), 278(93)$, and $276(50)$. Hydrolysis of the formyl ester (100 mg) with cold aqueous alcoholic alkali gave 12-(2-hydroxyethoxy)-8-methoxy-1,2,3,4-tetrahydrochrysene ($17 ; \mathrm{R}=\mathrm{H}$), needles (84 mg), m.p. $179-181^{\circ}$, from aqueous MeOH (Found: C, 78.3; H, 6.7. $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{3}$ requires $\mathrm{C}, 78.2 ; \mathrm{H}, 6.9 \%$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 1615 \mathrm{w}, 3450 \mathrm{~m}$, and $3625 \mathrm{w} \mathrm{cm}^{-1}$; $\lambda_{\text {max }} 257,273,285,313,339$, and 353 nm ($\varepsilon 27,300,18,700,12,400,5000,840$, and 620); $\tau\left(\mathrm{CDCl}_{3}\right)$ $1.8-3.4(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 3.44[1 \mathrm{H}, \mathrm{s}, \mathrm{C}(1 \mathrm{l}) \mathrm{H}], 5 \cdot 66(2 \mathrm{H}, \mathrm{t}$, $J 6 \mathrm{~Hz}$, ArO $\cdot \mathrm{CH}_{2}$), $5 \cdot 88\left[2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right], 7 \cdot 40[4 \mathrm{H}$, $\mathrm{m}, \mathrm{C}(1) \mathrm{H}_{2}$ and $\left.\mathrm{C}(4) \mathrm{H}_{2}\right]$, and $8.27\left[4 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{H}_{2}\right.$ and $\left.\mathrm{C}(3) \mathrm{H}_{2}\right] ; m / e 322\left(M^{+}, 100 \%\right), 278$ (18), 277 (17), and 250 (14).

3-Methoxy-D-homogona-2,5(10)-dien-12 β-ol (4).-(a) A slurry of the ketone (3) (2 g) in $\mathrm{Et}_{2} \mathrm{O}-\mathrm{Bu}^{\mathrm{t}} \mathrm{OH}(1: 1 ; 80 \mathrm{ml})$ was added to anhydrous $\mathrm{NH}_{3}(400 \mathrm{ml})$ containing $\mathrm{Et}_{2} \mathrm{O}-$ $\mathrm{Bu}{ }^{\mathrm{t}} \mathrm{OH}(320 \mathrm{ml})$. After stirring for $20 \mathrm{~min} \mathrm{Li}(1 \mathrm{~g})$ was added in small portions. After refluxing for 5 h the NH_{3} was allowed to evaporate. Next day the residue was stirred for 1 h with $\mathrm{EtOH}(100 \mathrm{ml})$ and poured into water. Isolation (CHCl_{3}, neutral conditions) gave an oil which crystallised on trituration with petroleum. The solid was recrystallised from petroleum (b.p. $60-80^{\circ}$) yielding the

[^2]enol ether (4) (1.65 g), needles, m.p. $130-131^{\circ}$, from aqueous MeOH (Found: C, $\mathbf{7 8 . 9}$; H, 9.6. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}$ requires C , $79.1 ; \mathrm{H}, 9.8 \%$); $\nu_{\text {max. }}\left(\mathrm{CCl}_{4}\right) 1668 \mathrm{w}, 1698 \mathrm{~m}$, and 3600 m $\mathrm{cm}^{-1} ; \tau\left(\mathrm{CDCl}_{3}\right) 5 \cdot 27[1 \mathrm{H}, \mathrm{t}, J 3 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}], 6.24(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 6.85\left[1 \mathrm{H}, \mathrm{m}, W_{\frac{1}{2}} 18 \mathrm{~Hz}, \mathrm{C}(12) \mathrm{H}\right]$, and $7.0-9.0(23 \mathrm{H}$, $\mathrm{m})$; $m / e 288\left(M^{+}, 47 \%\right.$), $270(33), 242(33), 122(66)$, and 41 (100).
(b) The unsaturated ketone (1) (4 g) was reduced using $\mathrm{NH}_{3}(800 \mathrm{ml}), \mathrm{Et}_{2} \mathrm{O}-\mathrm{Bu}^{\mathrm{t} O H}(320 \mathrm{ml})$, and $\mathrm{Li}(4 \mathrm{~g})$; compound (4), m.p. and mixed m.p. $130-131^{\circ}(3.3 \mathrm{~g})$, was obtained.

12 β-Hydroxy-D-homogon-5(10)-en-3-one (5).—The enol ether (4) (2 g) was dissolved in EtOH (250 ml) and a solution of oxalic acid (3 g) in water (20 ml) was added. After 3 h the solution was diluted with water; isolation $\left(\mathrm{CHCl}_{3}\right)$ gave an oil which crystallised on trituration with hexane. Recrystallisation from $\mathrm{Me}_{2} \mathrm{CO}$-hexane yielded the unsaturated ketone (5) as needles (1.69 g), m.p. 144 145°. The analytical sample was recrystallised from aqueous MeOH (m.p. $145-146{ }^{\circ}$) (Found: C, $\mathbf{7 8 . 8}$; H, $\mathbf{9 . 5}$. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2}$ requires $\left.\mathrm{C}, 78.8 ; \mathrm{H}, 9 \cdot 6 \%\right)$; $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1712 \mathrm{~s}$ and $3450 \mathrm{~m} \mathrm{~cm}{ }^{-1}$; $=\left(\mathrm{CDCl}_{3}\right) 6.95\left[1 \mathrm{H}, \mathrm{m}, W_{\frac{1}{2}} 18 \mathrm{~Hz}\right.$, $\mathrm{C}(12) \mathrm{H}]$ and $7 \cdot 26-9.0(25 \mathrm{H}, \mathrm{m})$; $m / e 274\left(M^{+}, 10 \%\right)$, 256 (100), and 214 (15).

12 β-Hydroxy-D-homogon-4-en-3-one (10).-The enol ether (4) (1 g) was dissolved in $\mathrm{MeOH}(250 \mathrm{ml}$) containing conc. $\mathrm{HCl}(2 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$ and the solution was heated under reflux (N_{2} atmosphere) for 3 h . The solvent was removed in vacuo and isolation ($\mathrm{Et}_{2} \mathrm{O}$) gave an oil which was chromatographed on silica $(50 \mathrm{~g})$. Elution with $\mathrm{PhH}-\mathrm{Et}_{2} \mathrm{O}$ mixtures ($20: 1-10: 1$) gave (5) (375 mg), $\mathrm{m} . \mathrm{p}$. and mixed m.p. 144-145 ${ }^{\circ}$. Benzene- $\mathrm{Et}_{2} \mathrm{O}$ (5:1) eluted the $\alpha \beta$-unsaturated ketone (10) (380 mg), m.p. $150-$ 152°. The analytical sample (aqueous MeOH) had m.p. $152-153^{\circ}$ (Found: $\mathrm{C}, 78 \cdot 6 ; \mathrm{H}, \mathbf{9 . 5} . \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2}$ requires C, $78.8 ; \mathrm{H}, 9.6 \%) ; \nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 1618,1666 \mathrm{~s}, 3445$, and $3600 \mathrm{w} \mathrm{cm}^{-1}$; $\lambda_{\text {max. }} 243 \mathrm{nml}(\varepsilon 15,000)$; $\approx\left(\mathrm{CDCl}_{3}\right) 4 \cdot 14[1 \mathrm{H}, \mathrm{s}$, $\mathrm{C}(4) \mathrm{H}], 6.54\left[1 \mathrm{H}, \mathrm{m}, W_{\frac{1}{2}} 24 \mathrm{~Hz}, \mathrm{C}(12) \mathrm{H}\right]$, and $7.4-9.0 \mathrm{~m}$ (24H); $m / e 274$ ($M^{+}, 21 \%$), 256 (43), 228 (18), 147 (40), and 110 (100).
The reaction was carried out under different conditions and results are summarised in Table 2; yields are of material isolated.

Table 2
Treatment of the enol ether (4) in acid

Wt. of ether (g)	Acid	Solvent [volume (ml)]	$\begin{gathered} \text { Time } \\ \text { of } \\ \text { reflux } \end{gathered}$ (h)		
1	HCl	$\mathrm{MeOH}(250)$	3	40	38
1	HCl	$\mathrm{MeOH}(250)$	5	11	32
0.08	$\underset{(6,}{\mathrm{H}_{2} \mathrm{SO}_{4}}$	MeOH (25)	2	19	60
$0 \cdot 1$	Oxalic (400 mg)	Dioxan (20)	27	16	70
$\theta \cdot 1$	Perchloric	$\begin{gathered} + \text { water }(3) \\ \mathrm{MeOH}(10) \end{gathered}$	2	5	84

The $\beta \gamma$-unsaturated ketone (5) (2.09 g) was dissolved in EtOH (200 ml) and N_{2} passed through the solution for 30 min . A solution of $\mathrm{Na}(1.68 \mathrm{~g})$ in $\mathrm{EtOH}(50 \mathrm{ml})$ was added. Next day HOAc (2 ml) was added and isolation $\left(\mathrm{CHCl}_{3}\right)$ gave an oil which crystallised on trituration with hexane yielding the ketone (10), m.p. $151-152^{\circ}(13 \mathrm{~g})$. The material (0.5 g) from the mother liquors was separated (p.l.c.) into (5) (35 mg) and (10) (200 mg) and unidentified non-polar materials.

D-Homogonane-3 β, 12 β-diol (11).-The ketone (10) (2 g) was reduced ($\mathrm{Li}-\mathrm{NH}_{3}-\mathrm{EtOH}$) yielding a solid (1.9 g). Recrystallisation from tetrahydrofuran-hexane gave needles $(1.8 \mathrm{~g}), \mathrm{m} . \mathrm{p} .212-214^{\circ}$. The diol formed large needles, m.p. 214-215 ${ }^{\circ}$, from aqueous MeOH (Found: C, 77.6 ; $\mathrm{H}, 10.6 . \quad \mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{2}$ requires $\mathrm{C}, 77.7 ; \mathrm{H}, 10.9 \%$); $\nu_{\text {max. }}$ (N) $3460 \mathrm{~s} \mathrm{~cm}^{-1}$; $\tau\left(\mathrm{CDCl}_{3}\right) 6.4\left[2 \mathrm{H}, \mathrm{m}, W_{\frac{1}{2}} 20 \mathrm{~Hz}, \mathrm{C}(3) \mathrm{H}\right.$ and $\mathrm{C}(12) \mathrm{H}]$ and $7 \cdot 0-9 \cdot 0(28 \mathrm{H}, \mathrm{m}) ; m / e 278\left(M^{+}, 1 \%\right), 260$ (41), and 242 (100). The diol was oxidised and the crude material purified by passing an $\mathrm{Me}_{2} \mathrm{CO}$-hexane (3:7) solution through alumina (yield $\mathbf{7 8} \%$). Recrystallisation ($\mathrm{Me}_{2} \mathrm{CO}$-hexane) yielded D-homogonane-3,12-dione (12), needles, m.p. 157-158 (Found: C, 78.4; H, 9.3. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2}$ requires C, $\mathbf{7 8 . 8} ; \mathrm{H}, \mathbf{9 . 6 \%}$); $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 1711$ $\mathrm{cm}^{-1} ; m / e 274\left(M^{+}, 100 \%\right), 256(9)$, and $124(7)$.

3-Methoxy-D-homogona-1,3,5(10)-triene.-The ketone (3) $(250 \mathrm{mg})$ was reduced (Huang-Minlon, total reaction time 7 h , solvent diethylene glycol). The resulting oil was dissolved in hexane and next day the phenol (44 mg) was collected. 3-Hydroxy-D-homogona-1,3,5(10)-triene formed large needles, m.p. $98-99^{\circ}$, from MeOH (Found: C, $\mathbf{8 4 \cdot 0}$; $\mathrm{H}, 9.3 . \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}$ requires C, 84.3 ; $\mathrm{H}, 9.4 \%$); ${ }^{\mathrm{m}_{\text {max }}}\left(\mathrm{CCl}_{4}\right)$ 1612 and $3620 \mathrm{~s} \mathrm{~cm}^{-1}$; $\tau\left(\mathrm{CCl}_{4}\right) 2.8[1 \mathrm{H}, \mathrm{d}, J 8.9 \mathrm{~Hz}, \mathrm{C}(1) \mathrm{H}]$, $3.38[1 \mathrm{H}, \mathrm{q}, J 8.9$ and $2.8 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}], 3.41[1 \mathrm{H}, \mathrm{d}, J 2.8 \mathrm{~Hz}$, $\mathrm{C}(4) \mathrm{H}], 5.35(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$, and $7.0-9.0(20 \mathrm{H}, \mathrm{m})$; $\lambda_{\text {max }}$ 223 and $287 \mathrm{~nm}(\varepsilon 3170$ and 785), ($\mathrm{EtOH}-\mathrm{NaOH}$) 247 and 300 ($\varepsilon 4100$ and 1300); m/e 256 ($M^{+}, 100 \%$), 228 (12), and 185 (22). The residue from hexane was chromatographed (p.l.c.; PhH-EtOAc, $3: 1$). The band ($R_{\mathrm{F}} 0.49$) yielded the title ether (81 mg), needles, m.p. $82-83^{\circ}$, from aqueous MeOH (Found: C, $84 \cdot 3 ; \quad \mathrm{H}, \mathbf{9 \cdot 5} . \quad \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}$ requires C , $84.4 ; \mathrm{H}, 9.7 \%)$; $\nu_{\text {max. }}\left(\mathrm{CCl}_{4}\right) 1608$ and $3010 \mathrm{w} \mathrm{cm}^{-1}$; $\lambda_{\text {max }}$ 223, 279, and $288 \mathrm{~nm}\left(\varepsilon 7500,1990\right.$, and 1950); $\div\left(\mathrm{CCl}_{4}\right)$ $2.90[1 \mathrm{H}, \mathrm{d}, J 8.6 \mathrm{~Hz}, \mathrm{C}(1) \mathrm{H}], 3.45[1 \mathrm{H}, \mathrm{q}, J 8.6$ and 2.7 Hz , $\mathrm{C}(2) \mathrm{H}], 3.51[1 \mathrm{H}, \mathrm{d}, J 2.7 \mathrm{~Hz}, \mathrm{C}(4) \mathrm{H}], 6.28(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $7 \cdot 0-9 \cdot 0(20 \mathrm{H}, \mathrm{m}), m / e 270\left(M^{+}, 100 \%\right), 199(36)$, and 173 (43). The above reaction was repeated and the crude material methylated, yielding the ether directly.
D-Homogon-4-en-3-one (8).—The foregoing ether (2.4 g) was reduced ($\mathrm{Li}-\mathrm{NH}_{3}-\mathrm{Bu}{ }^{\mathrm{t} O H}$) and the product ($2 \cdot 35 \mathrm{~g}$) dissolved in petrol and cooled to -30°. After 72 h the solid was collected and recrystallised (petrol) at low temp. 3-Methoxy-d-homogona-2,5(10)-diene formed cubes, m.p. $\mathbf{5 6 - 5 9}{ }^{\circ}$ (Found: C, $83.8 ; \mathrm{H}, 10 \cdot 4 . \quad \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}$ requires C. $83.8 ; \mathrm{H}, 10.4 \%)$; $\nu_{\max }\left(\mathrm{CCl}_{4}\right) 1665 \mathrm{w}$ and $1695 \mathrm{~cm}^{-1}$; $\tau\left(\mathrm{CDCl}_{3}\right) 5 \cdot 27[1 \mathrm{H}, \mathrm{t}, \mathrm{J} 3 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}], 6.42(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $7 \cdot 0-9 \cdot 0(22 \mathrm{H}, \mathrm{m}) ; m / e 272\left(M^{+}, 90 \%\right), 244(27)$, and 122 (100). The ether was hydrolysed with oxalic acid (room temp., 3 h) yielding D -homogon-5(10)-en-3-one, needles, m.p. 45-47 ${ }^{\circ}$, from petroleum (-30°) (Found: C. $83.8 ; \mathrm{H}, 10.1 . \quad \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}$ requires $\mathrm{C}, 83.7 ; \mathrm{H}, 10 \cdot 1 \%$); $\nu_{\text {max. }}\left(\mathrm{CCl}_{4}\right) 1725 \mathrm{~cm}^{-1} ; \tau\left(\mathrm{CCl}_{4}\right) 6.9-7 \cdot 6\left[4 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{H}_{2}\right.$ and $\left.\mathrm{C}(4) \mathrm{H}_{2}\right]$, and $7.7-9.0(22 \mathrm{H}, \mathrm{m}) ; m / e 258\left(M^{+}, 100 \%\right)$, 200 (65), 188 (80), 162 (92), and 148 (85). This ketone $(500 \mathrm{mg})$ was heated (1 h) in $\mathrm{MoOH}(10 \mathrm{ml}$) containing conc. $\mathrm{HCl}(1 \mathrm{ml})$. P.l.c. of the product $\left(\mathrm{Me}_{2} \mathrm{O}\right.$-hexane, $\left.1: 5\right)$ gave recovered $\beta \gamma$-unsaturated ketone (140 mg), $R_{\mathrm{F}} 0.59$. and the desired product (308 mg), $R_{F} 0.48$. The $\alpha \beta$ unsaturated ketone (8) formed needles (287 mg), m.p. $46-48^{\circ}$ (petrol, -30°) (Found: C, $83.3 ; \mathrm{H}, 10 \cdot 15$. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}$ requires $\mathrm{C}, 83.7 ; \mathrm{H}, 10.1 \%$); $\nu_{\text {max. }}\left(\mathrm{CCl}_{4}\right) 1618 \mathrm{w}$ and $1678 \mathrm{~cm}^{-1}$; $\lambda_{\text {max. }} 241 \mathrm{~nm}(\varepsilon 15,400), \tau\left(\mathrm{CCl}_{4}\right) 4 \cdot 25[1 \mathrm{H}$. $\mathrm{s}, \mathrm{C}(4) \mathrm{H}]$ and $6 \cdot 0-9 \cdot 0(25 \mathrm{H}, \mathrm{m})$; $m / e 258\left(M^{+}, 40 \%\right)$, 148 (91), 123 (43), and 110 (100).

D-Homogonan-3-one.-The ketone (8) (200 mg) was
reduced ($\mathrm{Li}-\mathrm{NH}_{3}-\mathrm{EtOH}$) and the crude product oxidised. P.l.c. $\left(\mathrm{Et}_{2} \mathrm{O}\right.$-petrol, l:2) and recrystallisation from petrol gave the saturated ketone as cubes (115 mg), m.p. $86-87^{\circ}$ (Found: C, 82.8; H, 10.7. $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}$ requires $\mathrm{C}, 83.0 ; \mathrm{H}$, $10.8 \%)$; $\nu_{\max }\left(\mathrm{CCl}_{4}\right) 1706 \mathrm{~s} \mathrm{~cm}{ }^{-1} ; m / e 262\left(M^{+}, 100 \%\right)$, 244 (10), 147 (81), and 110 (91).

4-Methoxy-D-homogona-1,3,5(10),9(11)-tetraen-12-one.- 5Methoxytetralone (22 g) was condensed with 1-acetylcyclohexene yielding the unsaturated ketone, rhomboids ($19 \cdot 2 \mathrm{~g}$), m.p. 168-170 ${ }^{\circ}$, from 1,2-dimethoxyethane (Found: C, $80.4 ; \mathrm{H}, 7.9 . \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.8 ; \mathrm{H}, 7.9 \%$); $\nu_{\text {max }}(\mathrm{N}) 1579 \mathrm{~s}, 1610 \mathrm{w}$, and $1654 \mathrm{~s} \mathrm{~cm}^{-1}$; $\lambda_{\text {max }} 242$ and $297 \mathrm{~nm}\left(\varepsilon 9000\right.$ and 18,800); $\tau\left(\mathrm{CDCl}_{3}\right) 2 \cdot 62[1 \mathrm{H}, \mathrm{q}, J 8 \cdot 0$ and $1.9 \mathrm{~Hz}, \mathrm{C}(1) \mathrm{H}], 2.81[1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}], 3.14$ $[1 \mathrm{H}, \mathrm{q}, J 8.0$ and $1.9 \mathrm{~Hz}, \mathrm{C}(3) \mathrm{H}], 3.4[1 \mathrm{H}, \mathrm{s}, \mathrm{C}(11) \mathrm{H}], 6.17$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.7-6.9\left[2 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) \mathrm{H}_{2}\right]$, and $7 \cdot 0-9.0(14 \mathrm{H}$, $\mathrm{m}) ; m / e 282\left(M^{+}, 100 \%\right), 239(14)$, and $200(70), m^{*} 203$ $(282 \longrightarrow 239)$ and $142(282 \longrightarrow 200)$. 5-Methoxytetralone $(1.9 \mathrm{~g})$ was recovered. The ketone was unaffected by NaOMe in MeOH .

4-Methoxy-D-homogona-1,3,5(10)-trien-12-one.-Reduction of the unsaturated ketone (14 g) $\left(\mathrm{Li}-\mathrm{NH}_{3}-\mathrm{EtOH}\right)$ yielded 4 -methoxy-D-homogona-1,3,5(10)-trien-12 β-ol, needles, m.p. $187-188^{\circ}(13 \cdot 1 \mathrm{~g})$, from aqueous MeOH (Found: C, 79.9; $\mathrm{H}, \mathbf{9 . 0} . \quad \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2}$ requires $\mathrm{C}, 79.7$; $\mathrm{H}, \mathbf{9 . 2} \%$); $\nu_{\text {max }}$ (N) 1588 and $3400 \mathrm{~cm}^{-1}$; $\lambda_{\text {max }} 221,272$, and $281 \mathrm{~nm}(\varepsilon 8400$, 1600 , and 1700$) ; \tau\left(\mathrm{CDCl}_{3}\right) 2.88[1 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}]$, $3.10[1 \mathrm{H}, \mathrm{q}, J 8$ and $1.8 \mathrm{~Hz}, \mathrm{C}(1) \mathrm{H}], 3.27[1 \mathrm{H}, \mathrm{q}, J 8$ and $1.8 \mathrm{~Hz}, \mathrm{C}(3) \mathrm{H}], 6.21(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.58\left(1 \mathrm{H}, \mathrm{m}, W_{\frac{1}{2}} 23 \mathrm{~Hz}\right.$, $\mathrm{CHOH})$, and $7 \cdot 0-9.0(19 \mathrm{H}, \mathrm{m}) ; m / e 286\left(M^{+}, 100 \%\right)$ and $268(10), m^{*} 251(286 \longrightarrow 268)$. Oxidation of this alcohol (10 g) gave the ketone (9.7 g), m.p. $169-171^{\circ}$, from MeOH (Found: $\mathrm{C}, 80.3 ; \mathrm{H}, 8.5 . \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.2 ; \mathrm{H}$, 8.5%) ; $\nu_{\text {max }}(\mathrm{N}) 1592$ and $1711 \mathrm{~s} \mathrm{~cm}^{-1}$; $\lambda_{\text {max }} 221,273$, and $280 \mathrm{~nm}(\varepsilon 7950,1530$, and 1580$)$; $\tau\left(\mathrm{CDCl}_{3}\right) 2.88[1 \mathrm{H}, \mathrm{t}$, $J 8 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}], 3.21[1 \mathrm{H}, \mathrm{q}, J 8.0$ and $1.7 \mathrm{~Hz}, \mathrm{C}(3) \mathrm{H}]$, $3.32[1 \mathrm{H}, \mathrm{q}, J 8.0$ and $1.7 \mathrm{~Hz}, \mathrm{C}(4) \mathrm{H}], 6.20(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $6.8-9.0(18 \mathrm{H}) ; m / e 284\left(M^{+}, 100 \%\right)$.

D-Homogonane-4,12-dione (15).-The foregoing ketone ($7 \cdot 6 \mathrm{~g}$) was reduced under ' forcing conditions' $\left[\mathrm{NH}_{3}(1 \mathrm{l})\right.$, $\mathrm{EtOH}(600 \mathrm{ml}), \mathrm{Li}(50 \mathrm{~g})]$ maintaining a ' bronze phase ' by adding NH_{3} and EtOH as required. Trituration of the product with $\mathrm{Et}_{2} \mathrm{O}$-light petroleum ($1: 1$) removed the alcohol formed by reduction of the $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{C}$ bonds. The gum (6.4 g) was boiled with $\mathrm{HCl}-\mathrm{MeOH}(3 \mathrm{~h})$ and the product was chromatographed on silica (250 g). Elution with $\mathrm{Me}_{2} \mathrm{CO}$-petrol ($1: 50,11$) gave hydrogenolysis products $(2 \cdot 62 \mathrm{~g})$; $\mathrm{Me}_{2} \mathrm{CO}$-petrol ($1: 16,1 \mathrm{l}$) yielded more alcohol (1.0 g); $\mathrm{Me}_{2} \mathrm{CO}$-petroleum ($1: 10$ and $1: 5,21$) gave $12 \beta-$ hydroxy-D-homogon-5(10)-en-4-one (9) (2.0 g). Recrystallisation from CHCl_{3}-hexane gave blades, m.p. $169-170^{\circ}$ (Found: C, 78.5; H, 9.4. $\quad \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 78 \cdot 8 ; \mathrm{H}$, $9.6 \%)$; $\nu_{\text {max }}\left(\mathrm{CS}_{2}\right) 1672 \mathrm{~s}$ and $3625 \mathrm{~cm}^{-1} ; \lambda_{\text {max }} 247 \mathrm{~nm}$ $(\varepsilon 12,000) ; \tau\left(\mathrm{CDCl}_{3}\right) 6.65\left[1 \mathrm{H}, \mathrm{m}, W_{1} 22 \mathrm{~Hz}, \mathrm{CHOH}\right]$ and $7 \cdot 6-9 \cdot 0(26 \mathrm{H}, \mathrm{m}) ; ~ m / e 274\left(M^{\dot{+}}, 30 \%\right)$, 256 (15), 111 (45), and 84 (100). This ketone (1.79 g) was reduced ($\mathrm{Li}-\mathrm{NH}_{3}-$ EtOH) to the diol (14), needles from aqueous MeOH , m.p. 203-206 ${ }^{\circ}(1.41 \mathrm{~g})$. Sublimation gave D -homogonane$4 \alpha, 12 \beta$-diol (14), long needles, m.p. 206-207 ${ }^{\circ}$ (Found: C, $77 \cdot 4 ; \mathrm{H}, 10 \cdot 7 . \mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{2}$ requires $\mathrm{C}, 77.7 ; \mathrm{H}, 10.9 \%$); $\nu_{\max }(\mathrm{N}) 3450 \mathrm{~cm}^{-1} ; m / e 278\left(M^{+}, 7 \%\right), 260(100)$, and 242 (40).

Oxidation of the diol yielded the diketone (15), small needles $\left(\mathrm{Me}_{2} \mathrm{CO}-\mathrm{Et}_{2} \mathrm{O}, 0^{\circ}\right)$, m.p. 200-201 ${ }^{\circ}$. Sublimation gave a sample, m.p. 202-203 ${ }^{\circ}$ (Found: C, 79•1; H, 9.5 .
$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2}$ requires $\mathrm{C}, 78 \cdot 8 ; \mathrm{H}, 9.6 \%$); $\nu_{\max }$ (N) $1702 \mathrm{~cm}^{-1}$; $m / e 274\left(M^{+}, 100 \%\right), 256(38), 219$ (67), 124 (63), and 109 (61).
Details of the nutrient media (A and B) and of the technique used in these microbiological hydroxylations have been published. The mycelia were collected, extracted with $\mathrm{Me}_{2} \mathrm{CO}$, and the culture fluid (broth) was saturated with salt and extracted either by shaking with EtOAc (extraction 1) or by continuous extraction with $\mathrm{Et}_{2} \mathrm{O}$ (extraction 2). ${ }^{3,4}$

Incubations with Calonectria decora.-Ketone (10) (440 mg), 3 d , medium B, extraction 1, yield broth extract 646 mg , mycelial extract 126 mg . P.1.c. (EtOAc) of mycelial extract gave $5 . m$. $(35 \mathrm{mg})$. The broth yielded s.m. ($R_{\mathrm{F}} 0.63$) (9 mg) and a band ($R_{\mathrm{F}} 0.43$) (322 mg). Recrystallisation from EtOAc afforded $12 \beta, 15 \alpha-d i h y d r o x y$-D-homogon-4-en-3-one (18), needles, m.p. 219-221 ${ }^{\circ}(312 \mathrm{mg})$, $\mathrm{m} . \mathrm{p} .224-226^{\circ}$ (aqueous MeOH) (Found: C, 74.3; H, 8.7. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3}$ requires C, $74.4 ; \mathrm{H}, 9.0 \%$); $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 1618 \mathrm{w}$, $1662 \mathrm{~s}, 3450 \mathrm{~m}$, and $3620 \mathrm{w} \mathrm{cm}^{-1}$; $\lambda_{\text {max }} 242 \mathrm{~nm}(\varepsilon 15,000)$; $\tau\left(\mathrm{CDCl}_{3}\right) 4 \cdot 10[1 \mathrm{H}, \mathrm{s}, \mathrm{C}(4) \mathrm{H}], 6.48\left[2 \mathrm{H}, \mathrm{m}, W_{\frac{1}{4}} 25 \mathrm{~Hz}\right.$, $\mathrm{C}(12) \mathrm{H}$ and $\mathrm{C}(15) \mathrm{H}]$, and $7 \cdot 0-8 \cdot 8(23 \mathrm{H}, \mathrm{m}) ; m / e 290\left(M^{+}\right.$, 2%), $272(20)$, and $254(100), m^{*} 254(290 \longrightarrow 272)$ and $238(272 \longrightarrow 254)$. A band ($R_{F} 0.34$) (84 mg) yielded $7 \alpha, 12 \beta, 15 \alpha$-trihydroxy-D-homogon-4-en-3-one (23), needles from CHCl_{3}-hexane, m.p. 187-189 ${ }^{\circ}$ (Found: C, $70 \cdot 6$; $\mathrm{H}, 8.4$. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 70 \cdot 6 ; \mathrm{H}, 8.6 \%\right)$; $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right)$ $1616 \mathrm{w}, 1660 \mathrm{~s}, 3450 \mathrm{~s}$, and $3620 \mathrm{w} \mathrm{cm}{ }^{-1}$; $\lambda_{\text {max }} \frac{\max }{241} \mathrm{~nm}(\varepsilon$ $11,500)$; $\tau\left(\mathrm{CDCl}_{3}\right) 4.05[1 \mathrm{H}, \mathrm{s}, \mathrm{C}(4) \mathrm{H}], 5 \cdot 65\left[1 \mathrm{H}, \mathrm{m}, W_{\frac{1}{4}}\right.$ $9 \mathrm{~Hz}, \mathrm{C}(7) \mathrm{H}], 6.45\left[2 \mathrm{H}, \mathrm{m}, W_{\frac{1}{2}} 24 \mathrm{~Hz}, \mathrm{C}(12) \mathrm{H}\right.$ and $\left.\mathrm{C}(15) \mathrm{H}\right]$, and $7 \cdot 0-9 \cdot 0(22 \mathrm{H}, \mathrm{m}) ; m / e 306\left(M^{+}, 45 \%\right), 288$ (21), 154 (32), 123 (45), and 110 (100).

The unsaturated ketone (18) (127 mg) was reduced ($\mathrm{Li}-\mathrm{NH}_{3}-\mathrm{EtOH}$) and the crude product oxidised yielding D-homogonane-3,12,15-trione (19), blades, m.p. 141- 142° $(67 \mathrm{mg})\left(\mathrm{Et}_{2} \mathrm{O}\right.$-light petrol) (Found: C, $75.0 ; \mathrm{H}, 8.3$. $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}$ requires C, $75.0 ; \mathrm{H}, 8.4 \%$); $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1708$ cm^{-1}. Samples ($10-20 \mathrm{mg}$) of the trione were treated with selenium dioxide and with DDQ. The neutral fraction recovered had no u.v. adsorption above 220 nm .

The triol (23) (45 mg) was dissolved in EtOH (5 ml) and $\mathrm{NaOH}(0.4 \mathrm{ml} ; 2 \mathrm{~m})$ added. After 30 min the product was isolated (44 mg). P.l.c. $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 4: 1\right)$ yielded $12 \beta-$ 15α-dihydroxy-D-homogona-4,6-dien-3-one (24), blades, m.p. $158-159^{\circ}$, from $\mathrm{Me}_{2} \mathrm{CO}$-hexane (Found: C, 74.9; H, 8.5. $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 75 \cdot 0 ; \mathrm{H}, 8.4 \%\right)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right)$ 1621s, $1655 \mathrm{~s}, 3445$, and $3600 \mathrm{w} \mathrm{cm}^{-1}$; $\lambda_{\text {max }} 282 \mathrm{~nm}(\varepsilon 29,500)$; $\tau\left(\mathrm{CDCl}_{3}\right) 3.61[1 \mathrm{H}, \mathrm{q}, J 11$ and $5 \mathrm{~Hz}, \mathrm{C}(7) \mathrm{H}], 3.90[1 \mathrm{H}, \mathrm{d}$, $J 11 \mathrm{~Hz}, \mathrm{C}(6) \mathrm{H}], 4 \cdot 14[1 \mathrm{H}, \mathrm{s}, \mathrm{C}(4) \mathrm{H}], 6.46[2 \mathrm{H}, \mathrm{m}, \mathrm{C}(12) \mathrm{H}$ and $\mathrm{C}(15) \mathrm{H}]$, and $7 \cdot 0-9 \cdot 0(19 \mathrm{H}, \mathrm{m}) ; m / e 298\left(M^{+}, 100 \%\right)$, 270 (71), 252 (10), and 110 (80). The enone (18) (58 mg) was dissolved in dry dioxan (6 ml ; saturated with HCl gas) and DDQ (50 mg) added. After 2 h isolation $\left(\mathrm{CHCl}_{3}\right)$ gave the dienone (24) (44 mg), m.p. and mixed m.p. 158 159°. The enol ether (4) (800 mg) medium B, extraction gave broth extract (1.2 g) and mycelial extract (300 mg). The mycelial extract yielded ketone (10) (80 mg); the broth extract contained (18) (40 mg) and a complex mixture of polar products (200 mg).
Incubation of the $\beta \gamma$-unsaturated ketone (5) (400 mg), medium B, extraction 1 produced $\mathrm{s} . \mathrm{m} .(80 \mathrm{mg})$ from the mycelium; the broth yielded (10) (20 mg), (18) (28 mg), and a polar mixture (200 mg). rac-D-Homogon-4-en-3-one (8) (320 mg), medium B, extraction 1 gave broth extract $(500 \mathrm{mg})$ and mycelial extract (110 mg). The latter
contained s.m. $(84.5 \mathrm{mg})$; and the broth afforded s.m. $(10 \mathrm{mg})$ and (18) (64.5 mg).

From the saturated diketone (12) (200 mg , medium B, extraction 1) was obtained s.m. (33 mg from mycelial extract) and from broth s.m. (25 mg) and $3 \alpha-h y d r o x y$-D-homogonan-12-one, needles (45 mg), m.p. $125-131^{\circ}$, from $\mathrm{Et}_{2} \mathrm{O}$-light petroleum (Found: $\mathrm{C}, \mathbf{7 8 \cdot 0} ; \mathrm{H}, \mathbf{1 0} \cdot 1 . \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.2 ; \mathrm{H}, 10.2 \%)$; $\nu_{\max }\left(\mathrm{CCl}_{4}\right)$ 1707s and 3620 $\mathrm{cm}^{-1} ; \tau\left(\mathrm{CDCl}_{3}\right) 5 \cdot 85\left[1 \mathrm{H}, \mathrm{q}, J 2.5 \mathrm{~Hz}, W_{5} 9 \mathrm{~Hz}, \mathrm{C}(3) \mathrm{Heq}\right]$,
 $m / e 276$ ($M^{+}, 75 \%$), 258 (100), 240 (29), 133 (70), and 109 (45). Oxidation of the hydroxy-ketone (10 mg) gave the dione (12) (9 mg). The hydroxy-ketone (30 mg) was reduced (Huang-Minlon) and the product oxidised to the known D-homogonan-3-one (see earlier) (16 mg), m.p. $88-90^{\circ}$.

Incubation of the 4,12 -dione (15) $(440 \mathrm{mg}$, medium B , extraction 1) gave s.m. (110 mg from mycelium, 21 mg from broth). P.l.c. of broth $\left(\mathrm{Me}_{2} \mathrm{CO}-\mathrm{Et}_{2} \mathrm{O}, 1: 2\right)$ gave $15 \alpha-$ hydroxy-D-homogonane-4,12-dione (21), small needles (61 mg), from CHCl_{3}-hexane, m.p. 216-217 ${ }^{\circ}$ (Found: C, 74.1; $\mathrm{H}, \mathbf{9 . 1} . \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 74 \cdot 4 ; \mathrm{H}, \mathbf{9 . 3} \%$); $\nu_{\max }(\mathrm{N}) 1709 \mathrm{~s}$ and $3450 \mathrm{~s} \mathrm{~cm}^{-1}$; $\tau\left(\mathrm{CDCl}_{3}\right) 6.40[1 \mathrm{H}, \mathrm{m}$, $\left.W_{\frac{1}{2}} 24 \mathrm{~Hz}, \mathrm{C}(15) \mathrm{H}\right]$ and $7 \cdot 0-9 \cdot 0(25 \mathrm{H}, \mathrm{m}) ; m / e 290\left(M^{+}\right.$, 41%), 272 (100), 171 (10), 142 (15), 133 (26), and 110 (47). Oxidation of the compound (30 mg) produced D -homo-gonane-4,15,15-trione (22), cubes (19 mg), m.p. $140-141^{\circ}$, from $\mathrm{Me}_{2} \mathrm{CO}$-hexane (Found: C, 74.8; H, 8.3. $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.0 ; \mathrm{H}, 8.4 \%$); $\nu_{\max }\left(\mathrm{CHCl}_{3}\right) 1709 \mathrm{~cm}^{-1}$; $m / e 288$ ($M^{+}, 40 \%$), 270 (6), 205 (20), 164 (21), 149 (19), 124 (8), and 97 (100).

Incubation with Rhizopus nigricans.-The unsaturated ketone (10) (440 mg) (medium B, extraction 1) gave a
mycelial extract (510 mg) and a broth extract (1.0 g). The mycelial extract (p.l.c., $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}, 9: 1\right)$ gave s.m. (220 mg). P.l.c. of the broth extract gave s.m. $(16 \mathrm{mg})$. The next polar band afforded a white solid (117 mg). $12 \beta, 17 \alpha$-Dihydroxy-D-homogon-4-en-3-one (25) formed needles (107 mg), m.p. $230-231^{\circ}$, from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane (Found: $\mathrm{C}, 74 \cdot 2 ; \mathrm{H}, \mathbf{9 . 0} . \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3}$ requires C , $74.4 ; \mathrm{H}, 9.0 \%$) ; $\nu_{\max }(\mathrm{N}) 1617 \mathrm{w}, 1665 \mathrm{~s}$, and $3450 \mathrm{~cm}^{-1}$; $\lambda_{\max } 242 \mathrm{~nm}(\varepsilon 14,700) ; \tau\left(\mathrm{CDCl}_{3}\right) 4 \cdot 1[1 \mathrm{H}, \mathrm{s}, \mathrm{C}(4) \mathrm{H}], 6 \cdot 45$ $\left[2 \mathrm{H}, \mathrm{m}, W_{\frac{1}{2}} 23 \mathrm{~Hz}, \mathrm{C}(12) \mathrm{H}\right.$ and $\left.\mathrm{C}(17) \mathrm{H}\right]$, and $7 \cdot 5-9 \cdot 0$ ($23 \mathrm{H}, \mathrm{m}$) ; $m / e 290$ ($M^{+}, 17 \%$), 272 (18), 254 (15), 145 (28), and 110 (100). The least polar band gave the triol (27) as needles, m.p. 217-218 ${ }^{\circ}$, from $\mathrm{Me}_{2} \mathrm{CO}$-hexane (Found: C, $70.5 ; \mathrm{H}, 8.4 . \quad \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4}$ requires $\mathrm{C}, 70.6 ; \mathrm{H}, 8.6 \%$); $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1616 \mathrm{w}, 1661 \mathrm{~s}, 3450$, and $3620 \mathrm{w} \mathrm{cm}^{-1}$; $\lambda_{\text {max }}$ $237 \mathrm{~nm}(\varepsilon 14,000) ; \tau\left(\mathrm{CDCl}_{3}\right) 4 \cdot 11[1 \mathrm{H}, \mathrm{s}, \mathrm{C}(4) \mathrm{H}], 5 \cdot 65[1 \mathrm{H}$, $\mathrm{m}, W_{\frac{1}{2}} 9 \mathrm{~Hz}, \mathrm{C}(6) \mathrm{H}$ or $\left.\mathrm{C}(7) \mathrm{H}\right], 6.44\left[2 \mathrm{H}, \mathrm{m}, W_{\frac{1}{2}} 24 \mathrm{~Hz}\right.$, $\mathrm{C}(12) \mathrm{H}$ and $\mathrm{C}(17) \mathrm{H}]$, and $7.5-8.9(22 \mathrm{H}, \mathrm{m}) ; m / e 306\left(M^{+}\right.$. 15%), 256 (24), 204 (48), 124 (40), and 110 (100).
The unsaturated ketone (25) (70 mg) was reduced ($\mathrm{Li}-\mathrm{NH}_{3}-\mathrm{EtOH}$) and the crude product oxidised. D-Homogonane-3,12,17-trione formed needles, m.p. 179-181 ${ }^{\circ}$ (43 mg) (Found: C, $75 \cdot 0 ; \mathrm{H}, 8 \cdot 2 . \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}$ requires C , $75.0 ; \mathrm{H}, 8.4 \%) ; \nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 1711 \mathrm{~s} \mathrm{~cm}^{-1} ; \tau\left(\mathrm{CDCl}_{3}\right) 7 \cdot 41$ $\left[5 \mathrm{H}, \mathrm{m}, \mathrm{C}(11) \mathrm{H}_{2}, \mathrm{C}(13) \mathrm{H}\right.$, and $\left.\mathrm{C}(17 \mathrm{a}) \mathrm{H}_{2}\right]$, and $7 \cdot 6-9 \cdot 0$ ($19 \mathrm{H}, \mathrm{m}$) ; m/e 288 ($M^{+}, 100 \%$), 270 (13), 201 (17), 146 (19), and 110 (17). This trione (25 mg) was boiled in glacial HOAc for 14 h with freshly sublimed SeO_{2}. The $\mathrm{Et}_{2} \mathrm{O}$ extract was filtered through Celite and evaporated. The yellow oil so obtained had $\lambda_{\text {max }} 254 \mathrm{~nm}(\varepsilon 10,500)$. T.l.c., $\mathrm{Et}_{2} \mathrm{O}$-light petroleum (1:1), $\mathrm{Me}_{2} \mathrm{CO}$-hexane (1:5) (2 runs), and CHCl_{3} (3 runs) showed one spot only.
[4/336 Received, 21st February, 1974]

[^0]: * Yields based on unrecovered starting material. \dagger Recovered as ketone (10).

[^1]: 10 R. L. Augustine, J. Org. Chem., 1958, 23, 1853; 1969, 34, 1075 ; R. L. Augustine and D. L. Brown, ibid., 1960, 25, 802.
 ${ }_{11}$ W. F. Johns, J. Org. Chem., 1963, 28, 1856.
 12 J. E. Cole, W. S. Johnson, P. A. Robins, and J. Walker, J. Chem. Soc., 1962, 244.
 ${ }_{13}$ H. L. Dryden, G. M. Webber, R. R. Burtner, and J. A. Cella, J. Org. Chem., 1961, 26, 3237.
 ${ }^{14}$ F. Bohlmann, C. Arndt, and J. Starnick, Tetrahedron Letters, 1963, 1605.

 15 J. E. Bridgeman, P. C. Cherry, A. S. Clegg, J. M. Evans, Sir Ewart R. H. Jones, A. Kasal, V. Kumar, G. D. Meakins, Y. Morisawa, E. E. Richards. and P. D. Woodgate, J. Chem. Soc. (C), 1970, 250.

[^2]: ${ }^{23}$ E. R. H. Jones and H. P. Koch, J. Chem. Soc., 1942, 393; E. R. Clark, ibid., 1959, 2345.
 ${ }_{24}$ G. N. Walker, J. Amer. Chem. Soc., 1958, 80, 645.

